Abstract
The tokamak is the most advanced approach to fusion and is approaching operation under power-plant conditions, promising sustainable, low-emission, baseload power to the grid. As the heating power of a tokamak is increased above a threshold, the plasma suddenly bifurcates to a state of high confinement, creating a region of plasma with a large pressure gradient at its edge. This bifurcation results in a repetitive sequence of explosive filamentary plasma eruptions called edge-localized modes (ELMs). ELMs on next-step tokamaks, such as ITER, will likely cause excessive erosion to plasma-facing components and must be controlled. We present what is understood about how ELMs form, their filamentary nature and the mechanisms that transport heat and particles to the first wall of the tokamak. We also discuss methods to control ELMs, including magnetic perturbations. Substantial progress has been made towards making fusion a source of commercial energy. One challenge is the damage that filamentary plasma eruptions cause to plasma-facing components. This Perspective summarizes what is understood about these eruptions and strategies for controlling them.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have