Abstract

Obtaining reliable winding paths for non-axisymmetric shapes with current filament winding technologies is still a challenge. In this study, an algorithm was developed for generating geodesic and non-geodesic paths that are slippage- and bridging-free and can be applied to axisymmetric as well as non-axisymmetric mandrel models represented by triangular meshes. By performing a stability analysis on the winding path on a curved surface, the non-slipping and non-bridging conditions on a triangular mesh are deduced. Then, according to the inverse process of stability analysis, the next path point that satisfies the stability conditions is determined. In this method, the surface normal vector is calculated by a geodesic rather than via the weighted average method. Consequently, a stroke of the winding path is constructed by adding the next path point recursively. In addition, strategies for generating stable paths on a mandrel surface that includes concave regions are presented to avoid bridging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.