Abstract

The weakly electric fish Gnathonemus petersii uses active electrolocation to detect and discriminate between objects in its environment. Objects are recognised by analysing the electric images, which they project onto the fish’s skin. In this study, we determined whether different types of large backgrounds interfere with the fishes’ ability to discriminate between objects. Fish were trained in a food-rewarded two-alternative forced-choice procedure to discriminate between two objects. In subsequent tests, structured and non-structured as well as stationary and moving backgrounds were positioned behind the objects and discrimination performance between objects was measured at different object distances. To define the electrosensory stimuli during the tests, the electric images of the objects and backgrounds used were measured. Without a background G. petersii was able to discriminate between objects up to distances of about 3–4cm. Even though the electric images of background and object superimposed in a complex way, the addition of stationary structured or plain backgrounds had only minor effects on the range of object discrimination. However, two types of moving backgrounds improved electrolocation by extending the range of object discrimination up to a distance of almost 5cm. This suggests that movements in the environment plays an important role for object identification and improves figure–ground separation during active electrolocation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.