Abstract

The Hawk-Dove game (Maynard Smith, 1982) has been used to analyse conflicts over resources such as food. At the evolutionarily stable strategy (ESS), either a proportionp* of animals always play Hawk, or each animal has a probabilityp* of playing Hawk. We modify the standard Hawk-Dove game to include a state variable,x, that represents the animal's level of energy reserves. A strategy is now a rule for choosing an action as a function ofx and time of day. We consider a non-reproductive period and adopt the criterion of minimizing mortality over this period. We find the ESS, which has the form ‘play Hawk if reserves are belowc* (t) at timet, otherwise play Dove’. This ESS is very different from the ESS in the standard Hawk-Dove game. It is a pure ESS that depends on the animal's state and on time. Furthermore, it is characterized by the strong condition that any single mutant that does not adopt the ESS suffers a reduction in fitness. The standard Hawk-Dove game assumes pay-offs that are related to fitness; our approach starts from a definition of fitness and derives the pay-offs in the process of finding the ESS. When the environment becomes worse (e.g. food becomes less reliable or energy expenditure increases) the ESS changes in such a way as to increase the proportion of animals that will play Hawk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.