Abstract

Abstract. Long records of hillslope runoff and nutrient concentrations are rare – on seasonally frozen ground they are almost non-existent. The Swift Current hillslopes at the Swift Current Research and Development Centre on the Canadian Prairies provide such a long-term hydrological record. Runoff, runoff nutrient concentration, snowpack depth, density and water equivalent, soil moisture, and soil nutrient concentration were monitored on the three 5 ha hillslopes over a 50-year period (1962–2011). Digital elevation data are available for the three hillslopes at a 2 m horizontal resolution, and, for one of the hillslopes (Hillslope 2), at a 0.25 m horizontal resolution. Runoff from the hillslopes was generated episodically during snowmelt and occasional rainfall events. Hillslope runoff was measured with a 0.61 m H-flume. Daily runoff nutrient concentration data are available for nitrate–N (March 1971–April 2011), ammoniacal–N (February 1996–April 2011), and phosphate-P (March–April 1971; June 1991–April 2011). Snowpack data (snowpack depth, density, and water equivalent) were determined via manual snow surveys carried out several times each winter, between January and March, between 1965 and 2011. Gravimetric soil moisture content was measured in October and April each year between 1971 and 2011 at five depth intervals (0–15, 15–30, 30–60, 60–90, and 90–120 cm) at nine points on each hillslope. We provide these hillslope data in two publicly available repositories: (1) 1962–2011 data on runoff, runoff nutrients, snowpack, soil moisture, soil nutrients, and crop and tillage practices at https://doi.org/10.23684/hhn5-rz52 (McConkey and Thiagarajan, 2018); and (2) digital elevation data at https://doi.org/10.20383/101.0117 (Coles et al., 2018). Complete climate data recorded at a Environment and Climate Change Canada meteorological station located 390 m from the three hillslopes are publicly available at http://climate.weather.gc.ca/ (last access: 30 August 2019).

Highlights

  • Long-term datasets that chronicle hydrological processes within the context of climate and land management change are rare

  • The hillslope-scale dataset is at the spatial scale intermediate between more traditional long-term catchment-scale datasets (e.g., Water Survey of Canada (WSC) Historical Data, the United States Geological Survey (USGS) National Streamflow Information Program, or the UK National River Flow Archive) and point-scale datasets (e.g., TERENOSOILCan network, Pütz et al, 2016, or the Reynold’s Creek soil lysimeter network, Seyfried et al, 2001)

  • This paper reports on an archive of downloadable data from an experimental, agriculturally managed hillslope site at Swift Current, Saskatchewan

Read more

Summary

Introduction

Long-term datasets that chronicle hydrological processes within the context of climate and land management change are rare. This is especially true for cold regions with seasonally frozen ground and where remoteness and inclement weather limit continuous measurements. This paper reports on an archive of downloadable data from an experimental, agriculturally managed hillslope site at Swift Current, Saskatchewan This dataset documents the characteristics more broadly of the semiarid portions of the northern Great Plains of North America. It serves as a resource for long-term analyses and model formulation, calibration, and testing of land management and climate change effects on agricultural hillslopes

The Swift Current hillslopes
Previous research with this dataset
Runoff
Runoff nutrient concentrations
Soil moisture
Soil nutrient concentrations
Meteorology
Summary

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.