Abstract

Modifying gravity at large distances by means of a massive graviton may explain the observed acceleration of the Universe without Dark Energy. The standard paradigm for Massive Gravity is the Fierz–Pauli theory, which, nonetheless, displays well known flaws in its massless limit. The most serious one is represented by the vDVZ discontinuity, which consists in a disagreement between the massless limit of the Fierz–Pauli theory and General Relativity. Our approach is based on a field-theoretical treatment of Massive Gravity: General Relativity, in the weak field approximation, is treated as a gauge theory of a symmetric rank-2 tensor field. This leads us to propose an alternative theory of linearized Massive Gravity, describing five degrees of freedom of the graviton, with a good massless limit, without vDVZ discontinuity, and depending on one mass parameter only, in agreement with the Fierz–Pauli theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.