Abstract

Quantum fluctuations in magnetic lattices can yield a quantum spin-liquid (QSL) state, where no long-range order appears even at zero temperature. The variety of mechanisms that can generate the spin-liquid state and the more exotic QSL state remain unclear, however. Here, we report a magnetic honeycomb system, $\mathrm{BaC}{\mathrm{o}}_{2}{({\mathrm{P}}_{1\text{\ensuremath{-}}x}{\mathrm{V}}_{x})}_{2}{\mathrm{O}}_{8}$, in which the spin correlations can be tuned by the disorder, leading to different magnetic behaviors. At low $x$, the material has a spin-glass ground state that appears to be due to coexisting and competing correlations. We have found that an external magnetic field can introduce spin-liquid-like behavior for some members of the solid solution, testified by the magnetic and thermodynamic experiments. Our results suggest that structural geometry, chemical disorder, and external field may help enhance quantum fluctuations in magnetic honeycomb materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.