Abstract
Ultrafast dynamics of genuine magneto-optical recording across ferrimagnetic compensation points is demonstrated in GdFeCo films using time-resolved polar Kerr spectroscopy combined with a laser-synchronized sinusoidal alternating magnetic field which can reinitialize irreversible initial magnetization state to laser radiating. The external field dependence of magnetization reversal dynamics is measured and shows that reversal rate accelerates with increasing external fields. Analysis of the magnetization reversal dynamics with Bloch equation shows the magnetization reversal rate is linearly dependent on the external fields within experimental errors, which supports quantitatively that the mechanism of magneto-optical recording in rare earth-transition metal ferromagnetic films is related to the formation and growth of the reversed domains. It is also shown that nucleation field is obviously larger than hot coercivity shown in the anomalous hysteresis loop.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.