Abstract
Crossability relationships between Scots pine (Pinus sylvestris L.) and mountain dwarf pine (Pinus mugo Turra) was studied, using artificial pollination approach. Partial compatibility of the reciprocal crossings of these species was proved experimentally, validating the idea of a spontaneous formation of their hybrid swarms under natural conditions. The hybrids were validated using organellar DNA markers and nuclear DNA microsatellites. Based on the percentage of filled seeds, the interspecific crossings were less efficient than the intraspecific cross-pollinations of P. sylvestris and P. mugo individuals. Both species were found to intercross readily with individuals of their putative hybrid swarm, P. mugo exhibiting a higher hybridological affinity towards putatively hybrid individuals than P. sylvestris. Validation of the hybrids confirmed the paternal inheritance of chloroplast DNA (cpDNA) in the combination P. sylvestris × P. mugo only. Surprisingly, in the reciprocal crossing P. mugo × P. sylvestris, maternal inheritance of cpDNA was revealed. Obtained results offer a new insight into the direction and intensity of gene flow within the hybrid swarms of Scots pine and mountain dwarf pine.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have