Abstract

Field-tuning mechanisms of spin switching and spin reorientation (SR) transition were investigated in a series of high-quality single crystal samples of PrxEr1-xFeO3 (x = 0, 0.1, 0.3, 0.5) prepared using the optical floating zone method. The single crystal quality, structure, and axis orientation were determined by room-temperature powder X-ray diffraction, back-reflection Laue X-ray diffraction, and Raman scattering at room temperature. Magnetic measurements indicate that the type and temperature region of SR transition are tuned by introducing different ratios of Pr3+ doping (x = 0, 0.1, 0.3, 0.5). The trigger temperatures of spin switching and magnetization compensation temperature of PrxEr1-xFeO3 crystals can be adjusted by doping with different proportions of Pr3+. Furthermore, the trigger temperature of the two types of spin switching in Pr0.3Er0.7FeO3 along the a-axis can be regulated by an external field. Meanwhile, the isothermal magnetic field-triggered spin switching effect is also observed along the a and c-axes of Pr0.3Er0.7FeO3. An in-depth understanding of the magnetic coupling and competition between the R3+ and Fe3+ magnetic sublattices, within the RFeO3 system, has important implications for advancing the practical applications of the relevant spin switching materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call