Abstract
AbstractSpecimens of the Asiatic clam Corbicula fluminea were transplanted from a clean lacustrine site to four stations along a polymetallic gradient in the river Lot (France), downstream from an old Zn ore treatment facility. The bivalves were held in benthic cages for a 5‐month exposure period, April to September 1996; mollusk growth and metal bioaccumulation kinetics (Cd, Zn) were followed by subsampling the cages at t = 0, 21, 49, 85, 120, and 150 d. Rates of Cd bioaccumulation in the whole soft bodies and in individual organs were greater at the upstream stations located close to the pollution source, but there was no direct proportionality between Cd in the bivalves and in the unfiltered or filtered river water samples. Unlike the case for Cd, rates of Zn bioaccumulation did not reflect the contamination gradient. Marked growth differences were measured among the four stations, reflecting both nutritional differences and changes in the degree of metal contamination; these growth differences produced markedly different trends when metal bioaccumulation was expressed in terms of burdens rather than concentrations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.