Abstract

BackgroundSchistosomiasis japonica, caused by infection with Schistosoma japonicum, is still recognized as a major public health problem in the Peoples’ Republic of China. Mathematical modelling of schistosomiasis transmission has been undertaken in order to assess and project the effects of various control strategies for elimination of the disease. Seasonal fluctuations in transmission may have the potential to impact on the population dynamics of schistosomiasis, yet no model of S. japonicum has considered such effects. In this paper, we characterize the transmission dynamics of S. japonicum using a modified version of Barbour’s model to account for seasonal variation (SV), and investigate the effectiveness of the control strategy adopted in Liaonan village of Xingzi county, Jiangxi Province.MethodsWe use mathematical tools for stability analysis of periodic systems and derive expressions for the basic reproduction ratio of S. japonicum in humans; we parameterise such expressions with surveillance data to investigate the conditions for persistence or elimination of the disease in the study village. We perform numerical simulations and parametric sensitivity analysis to understand local transmission conditions and compare values of the basic reproductive ratio with and without seasonal fluctuations.ResultsThe explicit formula of the basic reproduction ratio for the SV-modified Barbour’s model is derived. Results show that the value of the basic reproduction ratio, R0, of Liaonan village, Xingzi county is located between 1.064 and 1.066 (very close to 1), for schistosomiasis transmission during 2006 to 2010, after intensification of control efforts.ConclusionsOur modified version of the Barbour model to account for seasonal fluctuations in transmission has the potential to provide better estimations of infection risk than previous models. Ignoring seasonality tends to underestimate R0 values albeit only marginally. In the absence of simultaneous R0 estimations for villages not under control interventions (such villages do not currently exist in China), it is difficult to assess whether control strategies have had a substantial impact on levels of transmission, as the parasite population would still be able to maintain itself at an endemic level, highlighting the difficulties faced by elimination efforts.

Highlights

  • Schistosomiasis japonica, caused by infection with Schistosoma japonicum, is still recognized as a major public health problem in the Peoples’ Republic of China

  • The objectives of the present study are, (i) to modify the prevalence framework presented by Barbour by incorporating seasonally fluctuating dynamics, (ii) to derive expressions for the basic reproduction ratio with seasonality and compare them with those ignoring seasonality, (iii) to parameterize the model with surveillance data from a study village in Liaonan in Xingzi county, Jiangxi Province, and (iv) to discuss the impact of the interventions implemented on the stability and persistence of S. japonicum in the study area

  • Under these assumptions our aim is to assess the effect of the new integrated control strategy, which has been implemented since 2005, in terms of temporal trends in the magnitude of schistosomiasis transmission measured by R0, based on surveillance data collected at our study site

Read more

Summary

Introduction

Schistosomiasis japonica, caused by infection with Schistosoma japonicum, is still recognized as a major public health problem in the Peoples’ Republic of China. Mathematical modelling of schistosomiasis transmission has been undertaken in order to assess and project the effects of various control strategies for elimination of the disease. Seasonal fluctuations in transmission may have the potential to impact on the population dynamics of schistosomiasis, yet no model of S. japonicum has considered such effects. We characterize the transmission dynamics of S. japonicum using a modified version of Barbour’s model to account for seasonal variation (SV), and investigate the effectiveness of the control strategy adopted in Liaonan village of Xingzi county, Jiangxi Province. Over the last few decades, the prevalence and burden of disease in P.R. China has dropped significantly as a result of sustained efforts and updated intervention strategies within the context of the national schistosomiasis control programme [4,5]. The national control programme has intensified its efforts, implementing an integrated control strategy aiming to interrupt transmission by focusing on the elimination of infectious sources [9]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call