Abstract

BackgroundMotivated by the first mathematical model for schistosomiasis proposed by Macdonald and Barbour’s classical schistosomiasis model tracking the dynamics of infected human population and infected snail hosts in a community, in our previous study, we incorporated seasonal fluctuations into Barbour’s model, but ignored the effect of bovine reservoir host in the transmission of schistosomiasis. Inspired by the findings from our previous work, the model was further improved by integrating two definitive hosts (human and bovine) and seasonal fluctuations, so as to understand the transmission dynamics of schistosomiasis japonica and evaluate the ongoing control measures in Liaonan village, Xingzi County, Jiangxi Province.MethodsThe basic reproductive ratio R0 and its computation formulae were derived by using the operator theory in functional analysis and the monodromy matrix theory. The mathematical methods for global dynamics of periodic systems were used in order to show that R0 serves as a threshold value that determines whether there was disease outbreak or not. The parameter fitting and the ratio calculation were performed with surveillance data obtained from the village of Liaonan using numerical simulation. Sensitivity analysis was carried out in order to understand the impact of R0 on seasonal fluctuations and snail host control. The modified basic reproductive ratios were compared with known results to illustrate the infection risk.ResultsThe Barbour’s two-host model with seasonal fluctuations was proposed. The implicit expression of R0 for the model was given by the spectral radius of next infection operator. The R0s for the model ranged between 1.030 and 1.097 from 2003 to 2010 in the village of Liaonan, Xingzi County, China, with 1.097 recorded as the maximum value in 2005 but declined dramatically afterwards. In addition, we proved that the disease goes into extinction when R0 is less than one and persists when R0 is greater than one. Comparisons of the different improved models were also made.ConclusionsBased on the mechanism and characteristics of schistosomiasis transmission, Barbour’s model was improved by considering seasonality. The implicit formula of R0 for the model and its calculation were given. Theoretical results showed that R0 gave a sharp threshold that determines whether the disease dies out or not. Simulations concluded that: (i) ignoring seasonality would overestimate the transmission risk of schistosomiasis, and (ii) mollusiciding is an effective control measure to curtail schistosomiasis transmission in Xingzi County when the removal rate of infected snails is small.

Highlights

  • Motivated by the first mathematical model for schistosomiasis proposed by Macdonald and Barbour’s classical schistosomiasis model tracking the dynamics of infected human population and infected snail hosts in a community, in our previous study, we incorporated seasonal fluctuations into Barbour’s model, but ignored the effect of bovine reservoir host in the transmission of schistosomiasis

  • This study aims to further modify the Barbour’s twohost model with seasonal fluctuations (BTHSF model) and give an implicit expression of the basic reproductive ratio of schistosomiasis and computation method

  • Mathematical formulation The Barbour’s single-host model with seasonal fluctuations (BSHSF model) in Gao et al [30] was given by the following equations: 8 >

Read more

Summary

Introduction

Motivated by the first mathematical model for schistosomiasis proposed by Macdonald and Barbour’s classical schistosomiasis model tracking the dynamics of infected human population and infected snail hosts in a community, in our previous study, we incorporated seasonal fluctuations into Barbour’s model, but ignored the effect of bovine reservoir host in the transmission of schistosomiasis. Inspired by the findings from our previous work, the model was further improved by integrating two definitive hosts (human and bovine) and seasonal fluctuations, so as to understand the transmission dynamics of schistosomiasis japonica and evaluate the ongoing control measures in Liaonan village, Xingzi County, Jiangxi Province. A large-scale national schistosomiasis control programme was initiated in the mid-1950s [2, 3], when China’s population was approximately 600 million. R. China, Chinese government strengthened the national schistosomiasis control programme in 2004. Chinese government strengthened the national schistosomiasis control programme in 2004 This made schistosomiasis control top priority along with the list of other communicable diseases such as HIV/AIDS, tuberculosis, and hepatitis B in China [4, 12]. A revised strategy to effectively control schistosomiasis by using integrated measures in the national control programme has been implemented since 2005 [11]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call