Abstract

Enzyme-substrate kinetics form the basis of many biomolecular processes. The interplay between substrate binding and substrate geometry can give rise to long-range interactions between enzyme binding events. Here we study a general model of enzyme-substrate kinetics with restricted long-range interactions described by an exponent -γ. We employ a coherent-state path integral and renormalization group approach to calculate the first moment and two-point correlation function of the enzyme-binding profile. We show that starting from an empty substrate the average occupancy follows a power law with an exponent 1/(1-γ) over time. The correlation function decays algebraically with two distinct spatial regimes characterized by exponents -γ on short distances and -(2/3)(2-γ) on long distances. The crossover between both regimes scales inversely with the average substrate occupancy. Our work allows associating experimental measurements of bound enzyme locations with their binding kinetics and the spatial conformation of the substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.