Abstract
The present experiments were conducted to field test a system optimized for online prediction of beef LM tenderness based on visible and near-infrared (VISNIR) spectroscopy and to develop and validate a model for prediction of tenderness that would be unbiased by normal variation in bloom time before application of VISNIR. For both Exp. 1 and 2, slice shear force (SSF) was measured on fresh (never frozen) steaks at 14 d postmortem. Carcasses with VISNIR-predicted SSF ≤15 kg were classified as VISNIR predicted tender and carcasses with VISNIR-predicted SSF >15 kg were classified as VISNIR not predicted tender. In Exp. 1, spectroscopy was conducted online, during carcass grading, at 3 large-scale commercial fed-beef processing facilities. Each carcass (n = 1,155) was evaluated immediately after ribbing and again when the carcass was graded. For model development and validation, carcasses were blocked by plant and observed SSF. One-half of the carcasses (n = 579) were assigned to a calibration data set, which was used to develop regression equations, and one-half of the carcasses (n = 576) were assigned to a prediction data set, which was used to validate the regression equations. Carcasses predicted tender by VISNIR spectroscopy had smaller (P < 10(-19)) mean LM SSF values at 14 d postmortem in the calibration (13.9 vs. 16.5 kg) and prediction (13.8 vs. 16.4 kg) data sets than did carcasses not predicted tender by VISNIR spectroscopy. Relative to carcasses not predicted tender by VISNIR, a decreased percentage of carcasses predicted tender by VISNIR had LM SSF >25 kg in the calibration (2.0 vs. 7.8%) and prediction (0.8 vs. 8.0%) data sets. In Exp. 2, carcasses (n = 4,204) were evaluated with VISNIR online at 6 commercial fed-beef processing facilities on 38 production days. The carcasses predicted tender by VISNIR spectroscopy had decreased mean LM SSF values at 14 d postmortem (16.3 vs. 19.9 kg; P < 10(-87)), longer sarcomere lengths (1.77 vs. 1.72 µm; P < 10(-10)), and a greater percentage of desmin degraded (42 vs. 34%; P < 10(-5)) by 14 d postmortem. Relative to carcasses not predicted tender by VISNIR, a decreased percentage of carcasses predicted tender by VISNIR had LM SSF >25 kg (4.9 vs. 21.3%). The present experiments resulted in development and independent validation of a robust method to noninvasively predict LM tenderness of grain-fed beef carcasses. This technology could facilitate tenderness-based beef merchandising systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have