Abstract
To study the attenuation and dispersion effect of a new protective structure distribution layer constructed with a hollow particle composite material on the shock wave, a similar model field explosion test was carried out in this paper. The numerical simulation of explosion tests under different conditions was carried out by using the finite element program 3D/LS-DYNA and the test results were used for verification. The experimental results showed that under the same charge conditions, the shell-shielding layer above the distribution layer of the hollow-shell particle composite material was greatly deformed and the damage was more serious than that above the distribution layer of yellow sand, which had an obvious attenuation effect on the shock wave. Under the same charge condition, the stress peak at the bottom of the distribution layer of the empty shell particle composite material was 0.47 times that of the distribution layer of yellow sand at the same position; the stress wave rose and the pulse width increased, which had an obvious dispersion effect. The distribution layer constructed by the hollow particle composite material had no obvious overall comminution damage, which improved the secondary anti-explosion ability of the protective structure. Therefore, the distribution layer constructed with the hollow particle composite not only enhanced the energy absorption and wave elimination of the protective structure, but also improved the safety of the protective structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.