Abstract

To study the attenuation and dispersion effect of a new protective structure distribution layer constructed with a hollow particle composite material on the shock wave, a similar model field explosion test was carried out in this paper. The numerical simulation of explosion tests under different conditions was carried out by using the finite element program 3D/LS-DYNA and the test results were used for verification. The experimental results showed that under the same charge conditions, the shell-shielding layer above the distribution layer of the hollow-shell particle composite material was greatly deformed and the damage was more serious than that above the distribution layer of yellow sand, which had an obvious attenuation effect on the shock wave. Under the same charge condition, the stress peak at the bottom of the distribution layer of the empty shell particle composite material was 0.47 times that of the distribution layer of yellow sand at the same position; the stress wave rose and the pulse width increased, which had an obvious dispersion effect. The distribution layer constructed by the hollow particle composite material had no obvious overall comminution damage, which improved the secondary anti-explosion ability of the protective structure. Therefore, the distribution layer constructed with the hollow particle composite not only enhanced the energy absorption and wave elimination of the protective structure, but also improved the safety of the protective structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call