Abstract

It is common practice for humans to enhance the stiffness of a material by adding stiffer ingredients into it, which leads to the development of various composites of wide applications. However, irrespective of the configuration of the constituents of a multiphase composite, its compression elastic moduli are always between some bounds which are determined by the volume fractions and elastic moduli of the constituents inherently. Here, we report a magnetic composite material that is composed of a soft matrix material and two magnetic thin plates with small volume fraction. The compressive elastic modulus of the composite material is 25 times higher than the Halpin-Tsai upper bound due to the effect of the internal magnetic field. The measured maximum initial tangent modulus of the magnetic composite is ca. 40 times and 54 times higher than that of the nonmagnetic composite and PDMS matrix, respectively. This work provides a new direction for improving the performance of materials by fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call