Abstract

Accurate descriptions of P leaching are important because excess P applied to soils can enter surface water via leaching and subsurface transport, thereby negatively impacting water quality. The objectives of this study were to monitor P leaching in soils with a long-term history of waste application, relate soil solution P concentrations to soil P status, and quantify P leaching losses. Soil solution was monitored for 20 mo with samplers installed at 45-, 90-, and 135-cm depths in two pits (1 x 3 x 1.5 m) in Autryville (loamy, siliceous, thermic Arenic Paleudults) and Blanton (loamy, siliceous, semiactive, thermic Grossarenic Paleudults) soils located in a grazed pasture in Sampson County, NC, which had received swine waste for >20 yr. Maximum soil solution P concentrations at 45 cm exceeded 18 mg L(-1) in both soils. Soil solution P concentrations at 90 cm in the Blanton soil were similar to that at 45 cm indicating low P sorption. Soil solution P concentrations at 90 cm in the Autryville soil averaged 0.05 mg L(-1) compared to 10 mg L(-1) at 45 cm. A split-line model related soil solution P concentration to the degree of phosphorus saturation (DPS), identifying a change point at 45% DPS. Phosphorus movement past 45 cm equaled or exceeded surplus P additions for both soils. Long-term waste applications resulted in DPS > 90%, high soil solution P concentrations, and substantial vertical P movement. Phosphorus leaching should be considered when assessing long-term risk of P loss from waste-amended soils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call