Abstract

This study investigated the effects of nitrogen (N) source, rate, and timing of application on dry-matter yield (DMY), N responses, N uptake and N-use efficiency (NUE) in a grass crop. The experiment used three fertilizer treatments: calcium ammonium nitrate (CAN), urea, and urea treated with N-(n-butyl) thiophosphoric triamide (NBTPT), applied at 0 (control), 25, 50, and 75 kg ha−1 of N over eighteen application timings. Results showed relatively lower agronomic performance of urea compared with CAN when applied in early spring. Urea reported lower N responses, lower relative DMY (90 percent), and relative N uptake (85 percent), which translated in lower NUE (0.45 kg kg−1) compared with CAN (0.70 kg kg−1). In spring fertilizer applications, urea and NBTPT showed DMY and NUE values comparable to those obtained with CAN. However, NBTPT enhanced overall performance of urea, which was shown with increasing temperatures toward summer or increasing N application rates. For summer applications, the efficiency of urea was less (P < 0.05) than that of CAN or NBTPT in all measured parameters, suggesting greater ammonia volatilization loss in urea-treated grass. Nitrogen saved in volatilization improved uptake and responses in NBTPT-treated grass, and hence DMY was not affected compared with CAN in summer fertilizer applications. The results of this study are supportive of increased usage of urea-based fertilizers treated with NBTPT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.