Abstract
As an important part of many processors's floating point unit, fused multiply-add unit performs a multiplication followed immediately by an addition. In IBM POWER6 microprocessor's fused multiply-add unit, a fast 128-bit floating-point end-around-carry (EAC) adder is proposed. Very few algorithmic details exist in today's literature about this adder. In this study, a complete designed EAC adder that can work independently as a regular adder is proposed. Details about the proposed EAC adder's arithmetic algorithms are described. In IBM's original EAC adder, the Kogge'Stone tree has been chosen for its high performance on ASIC technology. In this study, the authors present a comparative study on different parallel prefix trees which are used in the design of our new EAC adder targeting field programmable gate array (FPGA) technology. Our study highlights the main performance differences among 14 different architecture configurations focusing on the area requirements and the critical path delay. The experimental results show that there is one architecture configuration with the lower area requirement and the higher performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.