Abstract

We present a field-programmable gate array (FPGA) based device that simultaneously generates two arbitrary analog voltage signals with the maximum sample rate of 1.25 MHz and acquires two analog voltage signals with the maximum sample rate of 2.5 MHz. All signals are synchronized with internal FPGA clock. The personal computer application developed for controlling and communicating with FPGA chip provides the shaping of the output signals by mathematical expressions and real-time monitoring of the input signals. The main advantages of FPGA based digital-to-analog and analog-to-digital cards are high speed, rapid reconfigurability, friendly user interface, and low cost. We use this module in slow light and storage of light experiments performed in Rb buffer gas cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.