Abstract

The mineral linarite, PbCuSO_{4}(OH)_{2}, is a spin-1/2 chain with frustrating nearest-neighbor ferromagnetic and next-nearest-neighbor antiferromagnetic exchange interactions. Our inelastic neutron scattering experiments performed above the saturation field establish that the ratio between these exchanges is such that linarite is extremely close to the quantum critical point between spin-multipolar phases and the ferromagnetic state. We show that the predicted quantum multipolar phases are fragile and actually suppressed by a tiny orthorhombic exchange anisotropy and weak interchain interactions in favor of a dipolar fan phase. Including this anisotropy in classical simulations of a nearly critical model explains the field-dependent phase sequence of the phase diagram of linarite, its strong dependence of the magnetic field direction, and the measured variations of the wave vector as well as the staggered and the uniform magnetizations in an applied field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.