Abstract

The finite size effects on magnetic properties of shell particles in the shape of truncated octahedron are studied using classical O(3) Heisenberg model. Both considered cases with nearest neighbor ferromagnetic (FM) and antiferromagnetic (AFM) exchange interactions show the existence of the well-defined ground state. The FM particles show FM order, while AFM particles show freezing in the non-collinear structure with very low magnetization due to the presence of frustrated triangular facets. The variation of magnetization, susceptibility and specific heat as a function of size shows considerable differences from that in the three-dimensional (3D) particles. We also observe effects of shell geometry, i.e. the fraction of sites in facets, edges and vertexes, which affects the apparent ordering temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.