Abstract
We have investigated field induced local oxidation of thin Ti films with the tip of an atomic force microscope. Tips, which have been coated with a diamond layer to improve their wear resistance, are shown to have a much longer lifetime than conventional uncoated Si tips. We have studied the oxidation characteristics as a function of the applied tip-sample voltage and scanning speed for both diamond coated and uncoated tips. We find that the diamond coated tips result in a thinner oxide layer for the same voltage and scanning speed. The dependence of the oxidation process on the film thickness was studied for diamond coated tips. Thin films can be completely transformed into an oxide layer for a thickness up to 15 nm. Moreover, for these sufficiently thin films the measured ratio between the oxide height and the Ti film thickness is a constant. It is also possible to completely oxidize Ti films which cover Au islands, opening the way to fabricate more complicated structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.