Abstract

We report time-resolved measurements of magnetization switching by spin–orbit torques in the absence of an external magnetic field in perpendicularly magnetized magnetic tunnel junctions (MTJs). Field-free switching is enabled by the dipolar field of an in-plane magnetized layer integrated above the MTJ stack, the orientation of which determines the switching polarity. Real-time single-shot measurements provide direct evidence of magnetization reversal and switching distributions. Close to the critical switching voltage, we observe stochastic reversal events due to a finite incubation delay preceding the magnetization reversal. Upon increasing the pulse amplitude to twice the critical voltage, the reversal becomes quasi-deterministic, leading to reliable bipolar switching at sub-ns timescales in zero external field. We further investigate the switching probability as a function of dc bias of the MTJ and external magnetic field, providing insight into the parameters that determine the critical switching voltage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call