Abstract
Current-induced magnetization switching was investigated in Au/Fe4N bilayer films grown by a plasma-assisted molecular beam epitaxy (PA-MBE) system. Depending on lattice distortion and interfacial coupling induced by substrates, the Fe4N layer could be divided into two sublayers having different magnetic anisotropies. The bottom sublayer shows perpendicular magnetic anisotropy (PMA), while the top one has in-plane magnetic anisotropy (IMA). Coupling between the two sublayers provides an extra in-plane effective field and enables a field-free magnetization switching in the bilayer films. By summarizing a series of Hall measurements, a switching phase diagram was obtained. Temperature-dependent switching behaviors demonstrate that the threshold current density for the field-free magnetization switching, which is much smaller than that of pervious reports, increases with decreasing temperature and shows similar temperature dependences to those of coercivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.