Abstract
ABSTRACTLong-standing measurement techniques for determining ground-level ozone (O3) and nitrogen dioxide (NO2) are known to be biased by interfering compounds that result in overestimates of high O3 and NO2 ambient concentrations under conducive conditions. An increasing near-ground O3 gradient (NGOG) with increasing height above ground level is also known to exist. Both the interference bias and NGOG were investigated by comparing data from a conventional Federal Equivalent Method (FEM) O3 photometer and an identical monitor upgraded with an “interference-free” nitric oxide O3 scrubber that alternatively sampled at 2 m and 6.2 m inlet heights above ground level (AGL). Intercomparison was also made between a conventional nitrogen oxide (NOx) chemiluminescence Federal Reference Method (FRM) monitor and a new “direct-measure” NO2 NOx 405 nm photometer at a near-road air quality measurement site. Results indicate that the O3 monitor with the upgraded scrubber recorded lower regulatory-oriented concentrations than the deployed conventional metal oxide–scrubbed monitor and that O3 concentrations 6.2 m AGL were higher than concentrations 2.0 m AGL, the nominal nose height of outdoor populations. Also, a new direct-measure NO2 photometer recorded generally lower NO2 regulatory-oriented concentrations than the conventional FRM chemiluminescence monitor, reporting lower daily maximum hourly average concentrations than the conventional monitor about 3 of every 5 days.Implications: Employing bias-prone instruments for measurement of ambient ozone or nitrogen dioxide from inlets at inappropriate heights above ground level may result in collection of positively biased data. This paper discusses tests of new regulatory instruments, recent developments in bias-free ozone and nitrogen dioxide measurement technology, and the presence/extent of a near-ground O3 gradient (NGOG). Collection of unbiased monitor inlet height–appropriate data is crucial for determining accurate design values and meeting National Ambient Air Quality Standards.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have