Abstract
This letter considers field emission from self-assembled silicon nanostructure arrays fabricated on n- and p-type silicon (100) substrates using electron beam rapid thermal annealing. Arrays of nanostructures with an average height of 8 nm were formed by substrate annealing at 1100 °C for 15 s. Following conditioning, the Si nanostructure field emission characteristics become stable and reproducible with Fowler–Nordheim tunneling occurring for fields as low as 2Vμm−1. At higher fields, current saturation effects are observed for both n-type and p-type samples. These studies suggest that the mechanism influencing current saturation at high fields acts independently of substrate conduction type.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.