Abstract

This paper reports on a field calibration and ambient deployment study with rapidly equilibrating thin-film passive air samplers. POlymer-coated Glass (POG) samplers have a coating of ethylene vinyl acetate (EVA) less than 1 microm thick coated on to glass, which can be dissolved off after exposure and prepared for quantification of persistent organic pollutants (POPs) that have partitioned into the film during field exposure. In this study, POGs were exposed for up to 18 d, in a study to assess compound uptake rates and their time to approach equilibrium. Results confirmed theoretical predictions, with time to equilibrium varying between a few hours to ca. 20 d for PCB-18 and PCB-138, respectively. Performance reference compounds and contaminated POGs were used to investigate depuration kinetics, confirming that lighter congeners behave extremely dynamically with substantial losses from the films over periods of a few hours. Repeated deployments of the samplers for different3-d periods yielded detectable levels of a range of PCB congeners, which had partitioned from as little as approximately 2 to 10 m3 air. This highlights the potential utility of POGs for extremely sensitive and dynamic passive air sampling in the future to help improve understanding of sources, environmental fate, and behavior of POPs. Recommendations are made for future improvements/refinements in POG sampling and handling procedures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.