Abstract

There is a growing demand for assessing the concentrations of Hydrophobic Organic Contaminants (HOCs) in aquatic environments, including Persistent Organic Pollutants (POPs). The hydrophobicity of POPs challenges their quantification in waters due to the sub-trace concentrations, especially when using conventional spot sampling. The results from the conventional samples are only a “snapshot” of the concentrations (if detected) at the specific sampling moment. Contrary, passive sampling provides average concentration levels over weeks or months from the quantification of accumulated pollutants during the deployment period. The present work compared ethylene vinyl acetate (EVA) and silicon rubber (SR) as monophasic passive samplers to measure dissolved concentrations of HOCs. Four classes of POPs were studied: (i) polychlorinated dibenzo-p-dioxins (PCDDs), (ii) polychlorinated dibenzofurans (PCDFs), (iii) polychlorinated biphenyls (PCBs), including the dioxin-like congeners, and (iv) the polybrominated diphenyl ethers (PBDEs). The polymer-water partition coefficients (Kpw), determined by the cosolvent and crossed calibrations, were, on average, one logarithmic unit larger in EVA than in the SR. The diffusion coefficients (Dp) estimated by the “film-stacking” method were, on average, two orders of magnitude smaller in the EVA than in the SR. For both polymers, the theoretical model of mass transfer resistance confirmed that the water boundary layer controlled the absorption, thus allowing the use of Performance Reference Compounds (PRCs) to estimate the in-situ sampling rates.Larger Kpw's in EVA may be an advantage because they imply longer time scales to reach equilibrium, higher absorption capacities and hence a higher absorbed contaminant mass, especially for compounds that reach equilibrium relatively faster (log Kow < 5). In addition, the longer times to attain equilibrium for EVA maintain this sampler longer in the linear phase of absorption, and the time-weighted average concentration may only be assessed in this phase when the compounds have not yet reached equilibrium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call