Abstract
Texel inlet, the largest inlet in the Dutch Wadden Sea, has undergone drastic changes in the morphology of basin, ebb-tidal delta and adjacent coastlines after closure of a major part of its back-barrier basin. Despite intensive monitoring and analysis, present observation-based conceptual models lack the subtle physics necessary to explain the sand exchange between inlet, ebb-tidal delta and adjacent coastlines. Fundamental understanding of the inlet dynamics and evolution is obtained by integrating field and model data analysis. The state-of-the-art process-based model Delft3D Online Morphology has been used to generate synoptic data of high spatial and temporal resolution over the inlet domain. It is shown that the Delft3D Online Morphology model is capable of the quasi real-time simulation of the dominant flow and transport patterns over a 3-month period on the scale of the inlet. The high-resolution numerical model results prove to be a valuable tool in identifying the main transport patterns and mechanisms in the inlet domain. Qualitative transport patterns in Texel Inlet and its associated ebb-tidal delta are derived by integration of the observations and model results. The present ebb-tidal delta developments are best described as a second-stage self-organizing phase of redistribution and recirculation of sediments to obtain a natural dynamic equilibrium state, adapted to the changed configuration of the main-ebb channels. Sand is transported from the abandoned ebb-delta front (western margin of Noorderhaaks) and along the adjacent coastlines into the basin where it partly settles. Ebb-tidal currents redistribute sand back from the basin mainly onto the southern ebb-tidal delta shoals. Large gross transport rates, but small morphological changes, point to sediment recirculation. Sediment import into the basin results from net flood dominated transport due to tidal asymmetry, landward directed wind- and wave-driven flow, and larger flood transport capacities due to wave effects (e.g. enhanced bed shear stresses and stirring of sediment) that exceed the net ebb-dominated tidal residual transports.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.