Abstract

AbstractIn this paper, we demonstrate the use of two conceptual principles, the field‐consistency requirement and the edge‐consistency requirement, as the basis for deriving a 4‐noded quadrilateral plate bending element based on Mindlin plate theory using Jacobean transformations only. The derivation is now free of the use of such devices as strain‐interpolation points and Hrennik off strain reference lines, etc., which have been the basis for many recent formulations of this element. The shear strain constraints are now consistently defined within the element domain, and ‘tangential’ shear strains are consistently matched at element boundaries so that there is no locking even under extreme distortion—e.g. even when two nodes are collapsed so that the quadrilateral becomes a triangle. Numerical experiments show that this synthesis produces an element that should be identical to other recent formulations of this element based on tensorial transformations or on shear constraint condensation on the edges, but now given a more complete and formal logical basis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.