Abstract

AbstractWe develop an easy and direct way to define and compute the fiducial distribution of a real parameter for both continuous and discrete exponential families. Furthermore, such a distribution satisfies the requirements to be considered a confidence distribution. Many examples are provided for models, which, although very simple, are widely used in applications. A characterization of the families for which the fiducial distribution coincides with a Bayesian posterior is given, and the strict connection with Jeffreys prior is shown. Asymptotic expansions of fiducial distributions are obtained without any further assumptions, and again, the relationship with the objective Bayesian analysis is pointed out. Finally, using the Edgeworth expansions, we compare the coverage of the fiducial intervals with that of other common intervals, proving the good behaviour of the former.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.