Abstract
We consider the zeta distributions, which are discrete power law distributions that can be interpreted as the counterparts of the continuous Pareto distributions with a unit scale. The family of zeta distributions forms a discrete exponential family with normalizing constants expressed using the Riemann zeta function. We present several information-theoretic measures between zeta distributions, study their underlying information geometry, and compare the results with their continuous counterparts, the Pareto distributions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.