Abstract

Microstructural characterisation of 2A97-T4 aluminium–lithium alloy was carried out using electron probe microanalysis and transmission electron microscopy (TEM). Scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy facilities has been employed to examine localised corrosion sites after immersion in sodium chloride solution. A dual beam microscope, which integrates a focused ion beam and an electron beam in one powerful instrument, has also been employed to investigate the development of intergranular corrosion from both surface and cross-section. It was found that localised corrosion is generally initiated at θ phase particles, which represents only 8.4% of the intermetallic (IM) particles in 2A97-T4 aluminium–lithium alloy. θ phase particles exhibit preferential dissolution of aluminium during corrosion testing, with trench formed at their periphery as well. Initiation of intergranular corrosion is relatively late with respect to the attack of IM particles. Owing to the presence of θ phase particles at intergranular corrosion sites and non-uniform distribution of T1 (Al2CuLi) grain boundary precipitates, it is supposed that dealloyed θ phase particles and grain boundary precipitates cooperate to provide the driving force for grain boundary attack.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.