Abstract

Abstract Fibrous hydroxyapatite (HA)–carbon nanotube composites were synthesized by the catalytic decomposition of acetylene over Fe–Co bimetallic catalysts supported on the fibrous HA. Two forms of fibrous HA (distinct needle-like monocrystals and spherulitic aggregates of needles) were synthesized using a simple precipitation method and loaded with bimetallic catalysts (from 2 up to 20 wt%) by a wet chemical impregnation method. The HA supported catalysts were evaluated for the in situ growth of carbon nanotubes using the catalytic chemical vapor deposition method. The effect of reaction temperature and metal loading on the yield, structural perfection and morphology of the carbon products were investigated using a combination of X-ray diffraction, thermal analysis, Raman spectroscopy and scanning and transmission electron microscopies. The results revealed that both the selection of the growing conditions and the metal loading determine the yield and overall quality of the synthesized carbon nanotubes, which exhibit high graphitization degree when synthesized in high yields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call