Abstract

A poor prognosis is often associated with ovarian clear cell carcinoma (OCCC) due to its relative resistance to platinum-based chemotherapy. Although several studies have been launched to explore the pathogenesis of OCCC, the mechanism of chemoresistance has yet to be uncovered. Nanostring nCounter PanCancer Pathways Panel was performed to explore the expression profiles of OCCC tissues from patients showing different platinum sensitivity. Bioinformatic analysis was performed to select genes associated with chemoresistance and cell function assays, including colony formation, wound healing, transwell and flow cytometric analysis, were used to explore the role of the target gene in the progression of OCCC and resistance to cisplatin (DDP). Gene expression profiles and bioinformatic analysis verified that the expression of fibroblast growth factor 11 (FGF11) was significantly increased in platinum-resistant OCCC tissues and increased FGF11 expression was related to poorer survival. Downregulation of FGF11 inhibited the proliferation, migration, and invasion, reversing the DDP resistance of OCCC cells. Mechanically, FGF11 was regulated by hypoxia-inducible factor-1α (HIF-1α) to modulate the DDP sensitivity. FGF11 was highly expressed in platinum-resistant OCCC tissues, promoting progression and resistance to DDP through the HIF-1α/FGF11 signaling axis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call