Abstract
Abstract2D materials are solid microscopic flakes with a‐few‐Angstrom thickness possessing some of the largest surface‐to‐volume ratios known. Altering their conformation state from a flat flake to a scroll or fiber offers a synergistic association of properties arising from 2D and 1D nanomaterials. However, a combination of the long‐range electrostatic and short‐range solvation forces produces an interlayer repulsion that has to be overcome, making scrolling 2D materials without disrupting the pristine structure a challenging task. Herein, a facile method is presented to alter the 2D materials’ inter‐layer interactions by confining organic salts onto their basal area, forming 2D‐confined electrolytes. The confined electrolytes produce local charge inhomogeneities, which can conjugate across the interlayer gap, binding the two surfaces. This allows the 2D‐confined electrolytes to behave as polyelectrolytes within a higher dimensional order (2D → 1D) and form robust nanofibers with distinct electronic properties. The method is not material‐specific and the resulting fibers are tightly bound even though the crystal structure of the basal plane remains unaltered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.