Abstract

Incorporation of polarimetric sensitivity into optical coherence tomography can provide additional image contrast when structures of interest are optically anisotropic (e.g., fibrous tissue). We present a generalized technique based on polarization-sensitive optical coherence tomography to detect changes in depth-resolved fibre orientation and thus increase image contrast in multiple-layered birefringent tissues. A high contrast B-scan image of collagen fibre orientation is shown for a porcine intervertebral disc cartilage specimen that exhibited low backscattering intensity contrast. Interfaces in the annulus fibrosus identified using depth-resolved fibre orientation allowed quantification of lamellae thickness. Moreover, the technique detects changes in fibre orientation without intense processing needed to effectively quantify tissue retardation and diattenuation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call