Abstract

In this study, an innovative approach based on fiberoptically coupled substrate-integrated hollow waveguide (iHWG) gas cells for the analysis of low sample volumes suitable for remote broad- and narrow-band mid-infrared (MIR; 2.5-20 μm) sensing applications is reported. The feasibility of remotely addressing iHWG gas cells, configured in a double-pass geometry via a reflector, by direct coupling to a 7-around-1 mid-infrared fiber bundle is demonstrated, facilitating low-level hydrocarbon gas analysis. For comparison studies, two iHWGs with substrate dimensions of 50 × 50 × 12 mm (L × W × H) and geometric channel lengths of 138 and 58.5 mm, serving as miniature light-guiding gas cells, were fiber-coupled to a Fourier transform infrared spectrometer enabling broadband MIR sensing. In addition to the fundamental feasibility of this concept, the achievable sensitivity toward several gaseous hydrocarbons and the reproducibility of assembling the fiber-iHWG interface were investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.