Abstract

Laser spectroscopy provides the basis of instrumentation developed for the diagnosis of infectious disease, via quantification of organic biomarkers that are produced by associated bacteria. The technology is centred on a multichannel pulsed quantum cascade laser system that allows multiple lasers with different wavelengths to be used simultaneously, each selected to monitor a different diagnostic biomarker. The instrument also utilizes a hollow silica waveguide (HSW) gas cell which has a very high ratio of interaction pathlength to internal volume. This allows sensitive detection of low volume gas species from small volume biological samples. The spectroscopic performance of a range of HSW gas cells with different lengths and bore diameters has been assessed using methane as a test gas and a best-case limit of detection of 0.26 ppm was determined. The response time of this cell was measured as a 1,000 sccm flow of methane passed through it and was found to be 0.75 s. These results are compared with those obtained using a multi-pass Herriot cell. A prototype instrument has been built and approved for clinical trials for detection of lung infection in acute-care patients via analysis of ventilator breath. Demonstration of the instrument for headspace gas analysis is made by monitoring the methane emission from bovine faeces. The manufacture of a hospital-ready device for monitoring biomarkers of infection in the exhaled breath of intensive care ventilator patients is also presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.