Abstract

The crystallization‐driven self‐assembly (CDSA) of crystalline‐coil polyselenophene diblock copolymers represents a facile approach to nanofibers with distinct optoelectronic properties relative to those of their polythiophene analogs. The synthesis of an asymmetric diblock copolymer with a crystallizable, π‐conjugated poly(3‐heptylselenophene) (P3C7Se) block and an amorphous polystyrene (PS) coblock is described. CDSA was performed in solvents selective for the PS block. Based on transmission electron microscopy (TEM) analysis, P3C7Se18‐b‐PS125 formed very long (up to 5 μm), highly aggregated nanofibers in n‐butyl acetate (nBuOAc) whereas shorter (ca. 500 nm) micelles of low polydispersity were obtained in cyclohexane. The micelle core widths in both solvents determined from TEM analysis (≈ 8 nm) were commensurate with fully‐extended P3C7Se18 chains (estimated length = 7.1 nm). Atomic force microscopy (AFM) analysis provided characterization of the micelle cross‐section including the PS corona (overall micelle width ≈ 60 nm). The crystallinity of the micelle cores was probed by UV–vis and photoluminescence (PL) spectroscopy and wide‐angle X‐ray scattering (WAXS).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call