Abstract
ABSTRACTThe aim of this article is to introduce an innovative algorithm for the calculation of the shift of the maximum reflectivity wavelength of a Fiber Bragg Grating experiencing an applied strain. An accurate and precise evaluation of the FBG spectrum displacement is crucial for determining the amount of the physical quantity inducing such perturbations. The proposed method is based on the Fast Fourier Transform based Cross Correlation function. Such method is compared to Least Squares Fitting (LSF) and the centroid algorithms, pointing out remarkable improvements in accuracy, precision, and time consumption performance. In addition, a further improvement of the proposed algorithm is introduced. It consists in an iteratively performed Cross Correlation algorithm. It has been proved that such improvement leads to estimations characterized by better accuracy and precision, thanks also to a considerable reduction of the peak-locking effect due to the FBG spectral resolution.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have