Abstract
Recently published studies on fiber-based optical coherence tomography (OCT) are reviewed mainly in relation to applications within the fields of biomedical imaging and precision measurement. A succinct introduction to fiber-based OCT system configurations is described including history, related core components, and functional characteristics. Then, an overview of fiber-optic probes is presented in terms of actuating method, scanning direction, and functionality. In order to verify the performance of fiber-optic OCT systems, fiber-based OCT images of several biological samples including pearls, fingers, teeth, and tumor tissues are presented. A multi-functional modality combined with laser induced fluorescence spectroscopy is also presented to distinguish between similar samples. Finally, some interesting fiber-optic OCT studies are briefly presented to measure various physical, chemical, and biological parameters. In particular, simultaneous refractive index and thickness measurement systems with self-referencing and dual probing techniques are introduced. Also, high precision measurement using a common-path OCT configuration is demonstrated with the help of Fourier domain phase analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.