Abstract

1. Biventer cervicis (BC) is an anatomically complex muscle that is divided by tendinous inscriptions into five in-series compartments of motor units. We have analyzed the fiber architecture and fiber-type composition of these different compartments using microdissection and histochemical methods. 2. BC narrows as it runs rostrally, but its in-series compartments have similar cross-sectional areas. The tapered shape of BC comes about because tendinous inscriptions and the tendon of insertion are oriented obliquely and muscle fibers attach in a progressively offset fashion from the medial to the lateral muscle edge. 3. Individual compartments of BC differ from one another in their architecture. The rostral two compartments (1 and 2) contain fibers of similar length that run between two plates of tendinous tissue. Compartments 3 and 4 are divided into two or three in-parallel subvolumes whose fiber bundles differ in their lengths and sites of attachment. Compartment 5 is the most variable in its structure. In some cats it is separated from compartment 4 by a tendinous inscription, but in other cats, it blends with a dorsomedial part of compartment 4 to form a single subvolume. 4. The relative lengths of fibers in different compartments were analyzed when the head and neck were held in different postures. Fibers in rostromedial regions were stretched more effectively when the head was flexed at suboccipital joints, and appeared to be less sensitive to movements at lower cervical joints. Movements across lower cervical joints produced substantial length changes in caudolateral parts of BC. 5. Muscle fibers of different histochemical types were not distributed evenly within each muscle compartment. Slow, oxidative (SO) fibers accounted for the majority of fibers near the nuchal midline but for only 30%-45% of fibers in lateral muscle regions. Proportions of fast, glycolytic (FG) fibers were greatest in lateral regions. Fast, oxidative-glycolytic (FOG) fibers were distributed quite uniformly throughout each compartment. 6. The specialized architecture of BC may shape its physiological capabilities. The complex internal structures of different compartments may alter the length-tension properties of BC.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call