7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1128/jvi.01359-06
Copy DOIJournal: Journal of Virology | Publication Date: Aug 30, 2006 |
Citations: 30 |
Fiber and penton base capsid proteins of adenovirus type 5 (Ad5) mediate a well-characterized two-step entry pathway in permissive tissue culture cell lines. Fiber binds with high affinity to the cell surface coxsackievirus-and-adenovirus receptor (CAR), and penton base facilitates viral internalization by binding alphav integrins through an RGD motif. In vivo, the entry pathway is complicated by interactions of capsid proteins with additional cell surface molecules and blood factors. When administered systemically in mice, adenovirus vectors (Adv) localize primarily to hepatic tissue, resulting in efficient gene transduction and potent activation of the host antiviral immune response. The goal of the present study was to detarget Adv uptake through fiber and penton base capsid protein manipulations and determine how detargeted vectors influence transduction efficiency, inflammatory activation, and activation of the adaptive arm of the immune system. By manipulating fiber and the penton base, we have generated highly detargeted vectors (up to 1,200-fold reduction in transgene expression in vivo) with reduced macrophage stimulatory activity in vitro and in vivo. In spite of the diminished transduction and macrophage activation, the detargeted vectors induce strong neutralizing immunity as well as efficient antitransgene antibody. Three of the modified vectors produce antitransgene humoral immunity at levels that exceed or are equal to that seen with an unmodified Ad5-based vector. The fiber-pseudotyped and penton base constructs with RGD deleted have attributes that could be important enhancements in a number of vaccine applications.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.