Abstract
A class of designed self-assembling peptide nanofiber scaffolds has been shown to be a good biomimetic material in tissue engineering. Here, we specifically made a new peptide hydrogel scaffold FGLmx by mixing the pure RADA16 and designer functional peptide RADA16-FGL solution, and we analyzed the physiochemical properties of each peptide with atomic force microscopy (AFM) and circular dichroism (CD). In addition, we examined the biocompatibility and bioactivity of FGLmx as well as RADA16 scaffold on spinal cord-derived neural stem cells (SC-NSCs) isolated from neonatal rats. Our results showed that RADA16-FGL displayed a weaker β-sheet structure and FGLmx could self-assemble into nanofibrous morphology. Moreover, we found that FGLmx was not only noncytotoxic to SC-NSCs but also promoted SC-NSC proliferation and migration into the three-dimensional (3-D) scaffold, meanwhile, the adhesion and lineage differentiation of SC-NSCs on FGLmx were similar to that on RADA16. Our results indicated that the FGL-functionalized peptide scaffold might be very beneficial for tissue engineering and suggested its further application for spinal cord injury (SCI) repair.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.