Abstract
The glycogen synthase kinase-3 (GSK3) orthologs are well-conserved in eukaryotic organisms. However, their functions remain poorly characterized in filamentous fungi. In our previous study, we unveiled the function of Fgk3, the GSK3 ortholog, in glycogen metabolism in Fusarium graminearum, the causal agent of Fusarium head blight. Interestingly, the fgk3 mutant was unstable and tended to produce fast-growing suppressors, including secondary suppressors. Using whole-genome sequencing, we identified suppressor mutations in FgCHS5, FgFKS1, FgCREA, FgSSN6, FgRGR1, and FgPP2A in nine primary and four secondary suppressors. Subsequently, we validated that deletion of FgCHS5 or FgCREAΔH253 mutation partially suppressed the defects of fgk3 in vegetative growth and cell wall integrity, suggesting that Fgk3 may regulate the chitin synthesis through FgCreA-mediated transcriptional regulation in F. graminearum. Accordingly, the FGK3 deletion led to hyphal swelling with abnormal chitin deposition, and deletion of FGK3 or FgCREA caused the upregulation of the expression of chitin synthases FgCHS5 and FgCHS6. The interaction between Fgk3 and FgCreA was verified by Yeast two-hybrid and Co-Immunoprecipitation assays. More importantly, we verified that the nuclear localization and protein stability of FgCreA relies on the Fgk3 kinase, while the H253 deletion facilitated the re-localization of FgCreA to the nucleus in the fgk3 mutant background, potentially contributing to the suppression of the fgk3 mutant's defects. Intriguingly, the ΔH253 mutation of FgCreA, identified in suppressor mutant S3, is adjacent to a conserved phosphorylation site, S254, suggesting that this mutation may inhibit the S254 phosphorylation and promote the nuclear localization of FgCreA. Collectively, our findings indicate that the glycogen synthase kinase Fgk3 regulates the chitin synthesis through the carbon catabolite repressor FgCreA in F. graminearum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.