Abstract

Structural rearrangements of the genome can drive lung tumorigenesis through the generation of fusion genes with oncogenic properties. Advanced genomic approaches have identified the presence of a genetic fusion between fibroblast growth factor receptor 3 (FGFR3) and transforming acidic coiled-coil 3 (TACC3) in non-small cell lung cancer (NSCLC), providing a novel target for FGFR inhibition. To interrogate the functional consequences of the FGFR3-TACC3 fusion in the transformation of lung epithelial cells, we generated a novel transgenic mouse model that expresses FGFR3-TACC3 concomitant with loss of the p53 tumor suppressor gene. Intra-nasal delivery of an Ad5-CMV-Cre virus promoted seromucinous glandular transformation of olfactory cells lining the nasal cavities of FGFR3-TACC3 (LSL-F3T3) mice, which was further accelerated upon loss of p53 (LSL-F3T3/p53). Surprisingly, lung tumors failed to develop in intra-nasally infected LSL-F3T3 and LSL-F3T3/p53 mice. In line with these observations, we demonstrated that intra-nasal delivery of Ad5-CMV-Cre induces widespread Cre-mediated recombination in the olfactory epithelium. Intra-tracheal delivery of Ad5-CMV-Cre into the lungs of LSL-F3T3 and LSL-F3T3/p53 mice however, resulted in the development of lung adenocarcinomas. Taken together, these findings provide in vivo evidence for an oncogenic function of FGFR3-TACC3 in respiratory epithelium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call