Abstract
FGF5 functions as a negative regulator of the hair cycle in mammals. It is expressed in the outer root sheath of hair follicles during the late anagen phase of the hair cycle. It functions as a signaling molecule, mediating the transition of the anagen growth phase to catagen regression phase of the hair cycle. Spontaneous and engineered FGF5 mutations in mammalian animal models result in long hair phenotypes. In humans, inherited FGF5 mutations result in trichomegaly (long eyelashes). Knockdown of fgf5 in zebrafish embryos results in inner ear alterations. Alterations in FGF5 expression are also associated with various human pathologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.